Hard a two drive system to hang

Hard Drive and IDE CD/DVD TroubleshootingHard Drive Failure Diagnostics Are all installed IDE drives properly identified by the BIOS and displayed on the start-up screen? Any modern PC should be able to identify the drive by model number, brand, capacity, and usually the transfer mode. Some brand name PCs may not display a start-up BIOS registration screen, so you'll have to enter CMOS Setup to view the information. If the key stroke required to enter CMOS Setup isn't displayed on the screen as the PC begins to boot, you'll need to look it up in the documentation or on the Internet.

Common keys used to access CMOS Setup at boot are, <DEL>, <F1> and <F2>. Return to Diagnostic Chart Any time two IDE drives share a single cable, the computer needs a way to tell them apart. This can be accomplished by using jumpers on the drives to set one to "Master" and the other to "Slave" or through selection by the cable.

Custom Essay Specifically
For You $13.90/page!


order now

The Master/Slave setting is fixed by a single jumper, usually on the back end of the drive between the power socket and the IDE connector. The labeling for the jumpers is usually in shorthand, "M" for Master and "S" for Slave. Some older drives include a jumper for "Single" (and spelled out labels) for when the drive is the only drive installed on the ribbon. Since all modern computers support both a primary and a secondary IDE interface, it's not necessary with a two drive system to hang them both on the same cable.

The boot hard drive should always be the Master on the primary IDE interface. If the CD, DVD, or any other IDE drive is to share the same cable, it should be set to Slave. Return to Diagnostic Chart Most new IDE drives support Cable Select (CS) which means the pin 28 connection in the cable will determine which drive is Master and which is Slave. The 80 wire ribbon cables that should come with all new motherboards and drives support cables select and have color coded connectors: Motherboard IDE Connector – Blue, Slave IDE connector (middle connector on cable) – Grey, Master – Black.

Cable select is supported by custom 40 wire ribbon cable and older drives; these are usually found in brand-name systems. The jumpers on both drives should be set to cable select if you aren't setting one as Master and the other as Slave. Return to Diagnostic Chart If the drives still don't register properly, make sure the power cable is seated in the drive's power socket, which can take a bit of force. The ribbon cable connectors must also be seated all the way into the IDE port on both the drives and the motherboard, or adapter card if you're are using a RAID adapter. The most common reason for a cabling failure of this sort is that the connection was partially dislodged when you were working in the case on something else.

Try a new ribbon cable. While cable failures are rare, it can happen, and it's a favorite trick of investigative reporters writing articles about computer repair rip-offs to intentionally introduce a bad IDE cable into a PC just to see how many parts a shop will sell them. Return to Diagnostic Chart Does the hard drive spin up? We covered this in the power supply diagnostics, but I'll repeat it here for convenience. When the PC powers up, you should hear the hard drive motor spinning up the drive and the gentle clunking sound of the read/wrote head seeking. If I can't tell whether or not the drive is spinning up, even with my fingers on the drive's top cover, I run the drive in my hand. A spun up drive resists a slow twisting movement just like a gyroscope. Don't flip it quickly or play with it or you may damage the drive, not to mention touching the circuitry against a conductor and causing a short.

Just power down, put the drive back in and continue with the diagnostics. If it's a SCSI drive, you're on the wrong diagnostics page, but maybe some new IDE hard drive will adopt the SCSI practice of a jumper to delay spin up. SCSI drives offer this option since you can install up to 15 on a single controller, and spinning them all up at once would cause the hardiest power supply to droop. Try swapping the power lead or running the drive on another power supply. One of the reasons I always use four screws in drives is so I can push hard on the power connector without the unit shifting around and possibly damaging the circuit board.

I've never broken a power socket off the circuit board on a hard drive, but I've seen it done, so don't go too crazy on it. Try the hard drive in another PC before you conclude that it's dead. USB enclosures are the easiest way to test hard drives,.

Leave a Comment

Your email address will not be published. Required fields are marked *

x

Hi!
I'm Lear

We will write an essay individually for you. You only need to choose a topic.

Check it out